首页> 外文OA文献 >Distributional models for lexical semantics: An investigation of different representations for natural language learning
【2h】

Distributional models for lexical semantics: An investigation of different representations for natural language learning

机译:词汇语义的分布模型:自然语言学习的不同表示形式的调查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Language learning systems usually generalize linguistic observations into rules and patterns that are statistical models of higher level semantic inferences. When the availability of training data is scarce, lexical information can be limited by data sparseness effects and generalization is thus needed. Distributional models represent lexical semantic information in terms of the basic co-occurrences between words in large-scale text collections. As recent works already address, the definition of proper distributional models as well as methods able to express the meaning of phrases or sentences as operations on lexical representations is a complex problem, and a still largely open issue. In this paper, a perspective centered on Convolution Kernels is discussed and the formulation of a Partial Tree Kernel that integrates syntactic information and lexical generalization is studied. Moreover a large scale investigation of different representation spaces, each capturing a different linguistic relation, is provided.
机译:语言学习系统通常将语言观察结果概括为规则和模式,这些规则和模式是高级语义推断的统计模型。当训练数据的可用性不足时,词汇信息可能会受到数据稀疏效应的限制,因此需要进行概括。分布模型根据大规模文本集合中单词之间的基本共现来表示词汇语义信息。正如最近的著作已经解决的那样,适当的分布模型的定义以及能够表达短语或句子的含义的方法作为对词汇表示法的操作是一个复杂的问题,并且仍然是一个很大的开放性问题。本文讨论了以卷积核为中心的透视图,并研究了将句法信息和词汇泛化相结合的偏树核的形成。此外,提供了对不同表示空间的大规模研究,每个表示空间都捕获了不同的语言关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号